Diabetes mellitus is one of the prevalent non-communicable diseases in the world, with India being infamously called the diabetes capital. A report by World Health Organization states that the number of diabetics has quadrupled since 1980 to 422 million adults globally. India has witnessed a dramatic rise in its diabetic population from 11.9 million in 1980 to 69.2 million in 2015. This alarming worldwide rise in the visibility of diabetes has prompted urgent research and intervention to alleviate its potentially catastrophic consequences. Prof. Milind Watve’s lab at the Indian Institute of Science, Education and Research (IISER), Pune, is adding a new dimension to this research by studying the underlying pathogenesis of diseases like diabetes from an evolutionary perspective.
Archives
In peering through a thick early morning mist or looking into a smoke-filled room or scanning muddy waters, we encounter a common problem – vision through such media gets obscured, and we cannot see what lies within. And many a times we have wanted to take pictures in foggy conditions, only to get a coarse image with no discernible features. ‘Seeing’ in these conditions would seem impossible without expensive equipments like thermal imaging cameras or radar technologies. The dream of that perfect picture on a foggy morning could be closer to reality, thanks to a new research. A collaborative study by scientists from Raman Research Institute (RRI), Bengaluru, and the University of Rennes, France are working to make seeing through the haze a reality.
Genetic research is at a colossal high today, and although we know a lot about our genes, the roles of more than 30% of the functional genes in the human body are not really understood. This number can be even lower for other members of the biotic world. Studies to determine gene function involve combinations of various experimental methods at biochemical, cellular, and organismal levels. One such method, that is popularly employed, uses temperature-sensitive mutant genes that behave differently at different temperatures. The process of identifying and generating mutated genes, however, is laborious, time-consuming and relies heavily on chance. It is at this juncture that Prof. Raghavan Varadarajan and his team from the Molecular Biophysics Unit, Indian Institute of Science, Bangalore, suggest an innovative, yet fairly straightforward, technique to study gene functionality, which would make one wonder how no one thought of this earlier!
What can your rooftop solar do for you; do for your country? In a one-day workshop held on the 11th of January at the National Institute of Advanced Studies (NIAS), Bangalore, in collaboration with the Ministry of New and Renewable Energy, scientists and practitioners brainstormed to discuss the challenges in setting up rooftop solar systems and solutions for the same. Prof. Baldev Raj, Director, NIAS gave the inaugural address, and Shri R.N. Nayak, Ex-CMD, Power Grid, delivered the keynote speech highlighting the policy, regulatory, socio-economic, and technical issues involving rooftop solar. The workshop saw participation from Solar Energy Corporation of India, BESCOM, Power Company of Karnataka Ltd., IIT-Mumbai, Indian Association for the Cultivation of Science, Syndicate Bank, Thermax, Renew Power, New India Solar, Prayas, and other representatives from academia and industry.
In the movie “Terminator: The Rise of Machines”, the character Terminatrix manipulates the Cyborgs tweaking them to work against humans and to her own advantage. Now, scientists have discovered that some strains of bacteria could do the same to some of our cells. Mycobacterium tuberculosis, the bacterium that causes tuberculosis, is one such. It manipulates the macrophages, a type of white blood cell that hunts and engulfs invading pathogens, to act as bacterial reservoirs and provide a survival niche. This niche not only provides the bacteria with nutrients, but also helps evade the normal immune response. In a recent study, a team of scientists from the Indian Institute of Science, Bangalore, has explored the mechanism behind the manipulation of macrophages by this bacteria.
One of the major scientific discoveries in the recent past has been the direct detection of gravitational waves, predicted by Einstein’s general theory of relativity about a century ago, by the Laser Interferometer Gravitational-Wave Observatory (LIGO) in 2016. The detection of short duration gravitational waves sent out during the cataclysmic merger of two black holes in a faraway galaxy, has stirred up considerable excitement as scientists expect more detection events from varied sources with advancements in detectors. A team of Indian astrophysicists led by Sushan Konar from the National Centre for Radio Astrophysics (NCRA), Pune, have now proposed a special class of neutron stars as candidates for targeted search for continuous gravitational waves with the next generation of instruments.
‘We are all made of stardust’ goes the common saying. The phrase is more than just rhetoric; it alludes to the formation of atoms and molecules in the universe. Most atoms and a few molecules around us were mostly formed in the bowels of exploding stars, which then went on to form planets, oceans, living organisms and everything in between. Now, a collaborative study by Raman Research Institute (RRI), Bangalore, Indian Institute of Science (IISc), Bangalore and P. N. Lebedev Physical Institute, Moscow, is studying the processes that may have led to the formation of these molecules from the debris of the exploding stars.
When bacteria or viruses enter our body, our immune system attacks these invaders through its first line of defense – inflammation – and helps us eject them. The inflammation generally dies down soon after. However, sometimes, our body can experience a long lasting immune response leading to chronic conditions such as osteoarthritis and fibrosis. This response, occurring in the absence of a bacterial or viral infection, is called a ‘sterile inflammation’. What causes such inflammations and how do we treat them? In a recent study, Dr. Srikala Raghavan and her team at the Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, try to answer these intriguing questions.
The Nobel Prize Series India 2017, in the last leg of its program, witnessed Nobel Laureates Prof. David Gross and Prof. Randy Schekman actively engage in a Q&A session at ITC Gardenia this morning. After attending the grand inauguration of the Nobel Exhibition by the Hon’ble Prime Minister Narendra Modi, at Science City, Ahmedabad on 9th January, the visiting laureates engaged in the Nobel Dialogue, held as a part of Vibrant Gujarat Summit at Mahatma Mandir in Gandhinagar.
Ribosomes are molecular machines that make proteins in cells. That the ribosomes are important can be judged by the fact that the cells spend about 40% of their energy in assembling them. In bacteria, ribosomes are made up of a large (50S) and a small (30S) subunits. Flaws in the assembly and maturation (biogenesis) of any of these subunits affect protein synthesis in various ways and often result in the organism’s intolerance to cold, and impact their resistance to drugs and pathogenity. In higher organisms (including humans), defective biogenesis of ribosomes could lead to various diseases. Hence, an understanding of how cells manage accuracy in the complex process of ribosome biogenesis is of utmost importance in developing therapeutic interventions. Now, a study from the laboratory of Prof. Umesh Varshney at the Department of Microbiology and Cell Biology, Indian Institute of Science (IISc), Bangalore, has unravelled the mechanism behind synthesis of ribosomes.