In an effort to make water resources sustainable, the Ministry of Earth Sciences, India and the Natural Environment Research Council (NERC), UK have funded a new project “Upscaling Catchment Processes for Sustainable Water Management in Peninsular India” (UPSCAPE). It is a 3-year £2 million research project that is one of the three projects in India initiated under the ambitious Newton-Bhabha Sustaining Water Resources Programme. Six institutes have come together as partners in this project, of which the prestigious Indian Institute of Science, Bangalore, is the lead Institute from India. “The motivating factor of the Newton-Bhabha project is to ensure science reaches the society and benefits it”, says Prof. Pradeep Mujumdar, Chairman at the Interdisciplinary Centre for Water Research, Indian Institute of Science. He also leads the team of Indian scientists working on the UPSCAPE project in the Cauvery river basin.
Archives
Ferroelectric materials carry a spontaneously polarized charge within their crystalline structure that can be reversed by the application of an electric field. As scientists try to shrink them to nanometre sizes, these materials often lose their polarization. Now, a collaborative research team from India and Germany has observed an unexpected effect in the ferroelectric alloy of bismuth ferrite and lead titanate (BiFeO3-PbTiO3). They have found that mechanically grinding this material to smaller sizes actually leads to a different atomic arrangement - a new structural phase that retains the polarization with slight alteration. This discovery opens up interesting possibilities for using this ferroelectric material in a variety of miniaturised devices - computer memory, RFIDs, sensors and actuators.
Nanotechonology, the field of science that manipulates objects at atomic or molecular level, is tout to be the science of the future. Researchers across the globe are working rigorously to tapthe potential this possesses. In a recent multinational collaborative study, researchers from the Indian Institute of Science(IISc), Bangalore, the Heriot-Watt University, Edinburgh, UK, and the Georg-August-Universität, Göttingen, Germany, have tried exploring the biomedical applicability of zinc oxide (ZnO) nanostructures. The results of this study have opened up novel possibilities in nanoscience research, especially pertaining to the field of biomedicine.
The traditional Asian chewing package used in marriages for symbolising heavenly love, is no longer having its heavenly charm according to a new research. Areca nut, packed with betel leaves and slaked lime, is an important chewing dessert in many Asian cultures. Its usage to cure indigestion and impotence dates back to first century AD and it is still being consumed by around 700 million people in the tropics for its psychoactive and brain stimulating properties. However, studies have indicated that several chemical compounds present in areca nut are carcinogens and its usage has been linked to oral cancers. Now a new study points at a detailed pathway on how chewing areca nut causes a precancerous condition.
Solar power has the potential to reverse the environmental challenges faced by the world today. With solar panels becoming economically viable and efficient by the day, solar energy may soon become the prime source of electricity. However, there are a few challenges faced in the process of electricity production through solar energy. In a recent study, researchers at the Indian Institute of Science, Bangalore, have addressed one such challenge while converting the Direct Current (DC) output of solar panels into Alternating Current (AC) required to run our appliances. Dr. Abhijit Kulkarni and Prof. Vinod John from the Department of Electrical Engineering have developed a new start-up method for a compact and efficient photovoltaic inverter that works with solar panels to convert DC to AC.
Nano-size polymers have made headlines in the recent years for their biological and medical applications. With dimensions of less than 100 nanometers (nm), they can carry drugs and pharmaceuticals in the body due to their subcellular size, sustained release properties and biocompatibility with our tissues and cells. But how are these nano-size polymers synthesized? In a recently written book chapter in the book, ‘Nano-size polymers: preparation, properties, application’, Prof. Manas Chanda, a retired faculty from the Indian Institute of Science, Bangalore and an expert in the field of polymers, has enunciated the direct synthesis of these tiny polymers by a method called microemulsion polymerization.
In a multinational collaborative study, researchers have designed a novel mobile app that can help novice designers in converting existing artifacts or mechanical objects into abstract representations. Prof. Amaresh Chakrabarti from the Centre for Product Design and Manufacturing, Indian Institute of Science, Bangalore and his team, consisting of researchers from Taiwan, have used Augmented Reality to build this tool that can aid design innovation.
Towards a Clearer Picture in Biomedical Imaging: An Improved Algorithm for Photo Acoustic Tomography
In a collaborative study between the Indian Institute of Science (IISc), Bangalore, and the University of Twente, The Netherlands, researchers have designed a new algorithm for image recovery in Photoacoustic Tomography (PAT). PAT is an important non-invasive biomedical imaging technique where the optical contrast rendered by laser beams and the superior resolution of ultrasound waves are used to study biological tissues. The new algorithm works better with higher accuracy as compared to the conventional ones in use today.
In 2013, melting of the Chorabari glacier led to heavy floods in Uttarakhand and Himachal Pradesh, causing massive loss of life and property. Glacier lake outburst floods (GLOF) like this, have become a major safety concern in the Himalayas and other mountainous regions across the world. A group of researchers from the Indian Institute of Science, Bengaluru has now developed a unique model that can help prevent massive damages. Led by Prof. Anil Kulkarni at the Divecha Centre for Climate Change, the model serves as a tool for safe planning and timely monitoring of glaciers.
Over the last several decades, antibiotics have played a critical role in fighting infectious diseases caused by bacteria and other microbes. However, blatant misuse and overuse of these drugs has resulted in the bacteria becoming resistant to a wide range of antibiotics where it changes itself to eliminate the action of the antibiotics and thus renders the drug useless. A recent work by researchers at the Indian Institute of Science, Bangalore and the Bose Institute, Kolkata, has addressed the challenge of antibiotic resistance using nanotechnology.